A Geometric Inequality for Warped Product Semi-slant Submanifolds of Nearly Cosymplectic Manifolds
نویسندگان
چکیده
Recently, we have shown that there do not exist warped product semi-slant submanifolds of cosymplectic manifolds [K.A. Khan, V.A. Khan and Siraj Uddin, Balkan J. Geom. Appl. 13 (2008), 55–65]. The nearly cosymplectic structure generalizes the cosymplectic one. Therefore the nearly Kaehler structure generalizes the Kaehler structure in almost Hermitian setting. It is interesting that the warped product semi-slant submanifolds exist in the nearly cosymplectic case while in the cosymplectic case they do not. In the beginning, we prove some preparatory results and finally we obtain an inequality such as ‖h‖2 ≥ 4q csc2 θ{1+ 1 9 cos2 θ}‖∇ ln f‖2 in terms of intrinsic and extrinsic invariants. The equality case is also considered.
منابع مشابه
Warped product submanifolds of cosymplectic manifolds
Cosymplectic manifolds provide a natural setting for time dependent mechanical systems as they are locally product of a Kaehler manifold and a one dimensional manifold. Thus study of warped product submanifolds of cosymplectic manifolds is significant. In this paper we have proved results on the non-existence of warped product submanifolds of certain types in cosymplectic manifolds. M.S.C. 2000...
متن کاملWarped product pseudo-slant submanifolds of nearly Kaehler manifolds
In this paper, we study warped product pseudo-slant submanifolds of nearly Kaehler manifolds. We prove the non-existence results on warped product submanifolds of a nearly Kaehler manifold.
متن کاملWarped Product Cr-submanifolds of Lp-cosymplectic Manifolds
In this paper, we study warped product CR-submanifolds of LP-cosymplectic manifolds. We have shown that the warped product of the type M = NT × fN⊥ does not exist, where NT and N⊥ are invariant and anti-invariant submanifolds of an LP-cosymplectic manifold M̄ , respectively. Also, we have obtained a characterization result for a CR-submanifold to be locally a CRwarped product.
متن کاملGeneric Warped Product Submanifolds in Nearly Kaehler Manifolds
Warped product manifolds provide excellent setting to model space-time near black holes or bodies with large gravitational force (cf. [1], [2], [14]). Recently, results are published exploring the existence (or non-existence) of warped product submanifolds in Kaehlerian and contact settings (cf. [6], [17], [20]). To continue the sequel, we have considered warped product submanifolds of nearly K...
متن کاملApplication of Hopf's lemma on contact CR-warped product submanifolds of a nearly Kenmotsu manifold
In this paper we consider contact CR-warped product submanifolds of the type $M = N_Ttimes_f N_perp$, of a nearly Kenmotsu generalized Sasakian space form $bar M(f_1, f_2, f_3)$ and by use of Hopf's Lemma we show that $M$ is simply contact CR-product under certain condition. Finally, we establish a sharp inequality for squared norm of the second fundamental form and equality case is dis...
متن کامل